Really Big Data: Analytics on Graphs with Trillions of Edges (Keynote Abstract)
نویسنده
چکیده
Big graphs occur naturally in many applications, most obviously in social networks, but also in many other areas such as biology and forensics. Current approaches to processing large graphs use either supercomputers or very large clusters. In both cases the entire graph must reside in memory before it can be processed. We are pursuing an alternative approach, processing graphs from secondary storage. While this comes with a performance penalty, it makes analytics on very large graphs feasible on a small number of commodity machines. We have developed two systems, one for a single machine and one for a cluster of machines. X-Stream, the single machine solution, aims to make all secondary storage access sequential. It uses two techniques to achieve this goal, edge-centric processing and streaming partitions. Chaos, the cluster solution, starts from the observation that there is little benefit to locality when accessing data from secondary storage over a high-speed network. As a result, Chaos spreads graph data uniformly randomly over storage devices, and uses randomized access to achieve I/O balance. Chaos furthermore uses work stealing to achieve computational load balance. By using these techniques, it avoids the need for expensive partitioning during pre-processing, while still achieving good scaling behavior. With Chaos we have been able to process an 8-trillion-edge graph on 32 machines, a new milestone for graph size on a small cluster. I will describe both systems and their performance on a number of benchmarks and in comparison to state-of-the-art alternatives. This is joint work with Laurent Bindschaedler (EPFL), Jasmina Malicevic (EPFL) and Amitabha Roy (Intel Labs). 1998 ACM Subject Classification C.2.4 Distributed Systems
منابع مشابه
B Ig G Raph : T Ools , T Echniques , I Ssues , C Hallenges and F Uture D Irections
Analyzing interconnection structures among the data through the use of graph algorithms and graph analytics has been shown to provide tremendous value in many application domains (like social networks, protein networks, transportation networks, bibliographical networks, knowledge bases and many more). Nowadays, graphs with billions of nodes and trillions of edges have become very common. In pri...
متن کاملGraphing trillions of triangles
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all tr...
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملApplication of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کامل